ROC曲线与AUC值

机器学习分类问题中,混淆矩阵(非监督学习中称匹配矩阵match matrix)用于表征算法的性能。如下表所示 […] 由此可得出: […] 二分类通常是通过选定阈值对结果进行分类。比如概率选取阈值为0.5,大于0.5的为正样本,小于则为负样本。如果阈值增大,那么假阳性率降低,同时真阳性也会降低;反之阈值减小,虽然真阳性率为增加,但是假阳性率也会增加。阈值的选取在一定程度 …